Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Gut Microbes ; 13(1): 1988390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793276

RESUMO

Many pathogens use M cells to access the underlying Peyer's patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb), and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyer's patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Yersinia pseudotuberculosis/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Íleo/citologia , Mucosa Intestinal/metabolismo , Modelos Biológicos , Organoides/citologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Temperatura , Transcitose , Migração Transendotelial e Transepitelial , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Cell ; 184(23): 5715-5727.e12, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34717799

RESUMO

The enteric nervous system (ENS) controls several intestinal functions including motility and nutrient handling, which can be disrupted by infection-induced neuropathies or neuronal cell death. We investigated possible tolerance mechanisms preventing neuronal loss and disruption in gut motility after pathogen exposure. We found that following enteric infections, muscularis macrophages (MMs) acquire a tissue-protective phenotype that prevents neuronal loss, dysmotility, and maintains energy balance during subsequent challenge with unrelated pathogens. Bacteria-induced neuroprotection relied on activation of gut-projecting sympathetic neurons and signaling via ß2-adrenergic receptors (ß2AR) on MMs. In contrast, helminth-mediated neuroprotection was dependent on T cells and systemic production of interleukin (IL)-4 and IL-13 by eosinophils, which induced arginase-expressing MMs that prevented neuronal loss from an unrelated infection located in a different intestinal region. Collectively, these data suggest that distinct enteric pathogens trigger a state of disease or tissue tolerance that preserves ENS number and functionality.


Assuntos
Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/parasitologia , Infecções/microbiologia , Infecções/parasitologia , Neurônios/patologia , Neuroproteção , Especificidade de Órgãos , Yersinia pseudotuberculosis/fisiologia , Animais , Eosinófilos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Imunidade , Infecções/imunologia , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Strongyloides/fisiologia , Estrongiloidíase/genética , Estrongiloidíase/imunologia , Estrongiloidíase/parasitologia , Transcriptoma/genética , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260403

RESUMO

Injection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic Yersinia species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense. While recent studies revealed that caspase-8 cleaves the pore-forming protein gasdermin D to trigger pyroptosis in macrophages, whether RIPK1 activates additional substrates downstream of caspase-8 to promote host defense is unclear. Here, we report that the related gasdermin family member gasdermin E (GSDME) is activated upon detection of YopJ activity in a RIPK1 kinase-dependent manner. Specifically, GSDME promotes neutrophil pyroptosis and IL-1ß release, which is critical for anti-Yersinia defense. During in vivo infection, IL-1ß neutralization increases bacterial burden in wild-type but not Gsdme-deficient mice. Thus, our study establishes GSDME as an important mediator that counteracts pathogen blockade of innate immune signaling.


Assuntos
Imunidade Inata , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Yersinia pseudotuberculosis/fisiologia , Células 3T3 , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piroptose , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia
4.
Microbiol Res ; 249: 126787, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991717

RESUMO

Zinc homeostasis is crucial for the development and stress resistance of bacteria in the environment. Serial zinc sensing transcriptional regulators, zinc transporters and zinc binding proteins were found to maintain the zinc homeostasis in bacteria. Zur is a zinc uptake regulator that is widely distributed in species, and ZnuABC, as well as the Type VI Secretion System (T6SS4) function in zinc acquisition. Here, we report that the regulator Zur inhibits the expression of the ZnuABC which inhibition could be eliminated at low zinc level, and upregulates the T6SS4 operon in Yersinia pseudotuberculosis to facilitate Zn2+ uptake and oxidative stress resistance. Zur regulates the expression of ZnuABC and T6SS4 by directly binding to their promoter regions. Zur senses the Zn2+ concentration and represses ZnuABC in a Zn2+-containing environment. Zur works as an auxiliary regular activator of T6SS4, facilitating oxidative stress resistance. This study revealed the dual function of regulator Zur on ZnuABC and T6SS4, and enriched the knowledge of Zn2+ homeostasis maintenance in Y. pseudotuberculosis.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo VI/genética , Yersinia pseudotuberculosis/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Óperon , Porinas/genética , Porinas/metabolismo , Regiões Promotoras Genéticas , Sistemas de Secreção Tipo VI/metabolismo , Yersinia pseudotuberculosis/fisiologia , Zinco/metabolismo
5.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33495272

RESUMO

Pathogenic Yersinia spp. depend on the activity of a potent virulence plasmid-encoded ysc/yop type 3 secretion system (T3SS) to colonize hosts and cause disease. It was recently shown that Yersinia pseudotuberculosis upregulates the virulence plasmid copy number (PCN) during infection and that the resulting elevated gene dose of plasmid-encoded T3SS genes is essential for virulence. When and how this novel regulatory mechanism is deployed and regulates the replication of the virulence plasmid during infection is unknown. In the present study, we applied droplet digital PCR (ddPCR) to investigate the dynamics of Y. pseudotuberculosis virulence PCN variations and growth rates in infected mouse organs. We demonstrated that both PCN and growth varied in different tissues and over time throughout the course of infection, indicating that the bacteria adapted to discrete microenvironments during infection. The PCN was highest in Peyer's patches and cecum during the clonal invasive phase of the infection, while the highest growth rates were found in the draining mesenteric lymph nodes. In deeper, systemic organs, the PCN was lower and more modest growth rates were recorded. Our study indicates that increased gene dosage of the plasmid-encoded T3SS genes is most important early in the infection during invasion of the host. The described ddPCR approach will greatly simplify analyses of PCN, growth dynamics, and bacterial loads in infected tissues and will be readily applicable to other infection models.


Assuntos
Carga Bacteriana , Variações do Número de Cópias de DNA , Plasmídeos/genética , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/fisiologia , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Feminino , Camundongos , Especificidade de Órgãos , Reação em Cadeia da Polimerase em Tempo Real , Virulência , Fatores de Virulência/genética , Infecções por Yersinia pseudotuberculosis/diagnóstico
6.
Science ; 372(6549)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058659

RESUMO

Host cells initiate cell death programs to limit pathogen infection. Inhibition of transforming growth factor-ß-activated kinase 1 (TAK1) by pathogenic Yersinia in macrophages triggers receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent caspase-8 cleavage of gasdermin D (GSDMD) and inflammatory cell death (pyroptosis). A genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen to uncover mediators of caspase-8-dependent pyroptosis identified an unexpected role of the lysosomal FLCN-FNIP2-Rag-Ragulator supercomplex, which regulates metabolic signalling and the mechanistic target of rapamycin complex 1 (mTORC1). In response to Yersinia infection, FADD, RIPK1 and caspase-8 were recruited to Rag-Ragulator, causing RIPK1 phosphorylation and caspase-8 activation. Pyroptosis activation depended on Rag GTPase activity and lysosomal tethering of Rag-Ragulator, but not mTORC1. Thus, the lysosomal metabolic regulator Rag-Ragulator instructs the inflammatory response to Yersinia.


Assuntos
Caspase 8/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Yersinia pseudotuberculosis/fisiologia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Inflamassomos/metabolismo , Membranas Intracelulares/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Yersinia pseudotuberculosis/patogenicidade
7.
Elife ; 92020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32543373

RESUMO

Within deep tissue sites, extracellular bacterial pathogens often replicate in clusters that are surrounded by immune cells. Disease is modulated by interbacterial interactions as well as bacterial-host cell interactions resulting in microbial growth, phagocytic attack and secretion of host antimicrobial factors. To overcome the limited ability to manipulate these infection sites, we established a system for Yersinia pseudotuberculosis (Yptb) growth in microfluidics-driven microdroplets that regenerates microbial social behavior in tissues. Chemical generation of nitric oxide (NO) in the absence of immune cells was sufficient to reconstruct microbial social behavior, as witnessed by expression of the NO-inactivating protein Hmp on the extreme periphery of microcolonies, mimicking spatial regulation in tissues. Similarly, activated macrophages that expressed inducible NO synthase (iNOS) drove peripheral expression of Hmp, allowing regeneration of social behavior observed in tissues. These results argue that topologically correct microbial tissue growth and associated social behavior can be reconstructed in culture.


Assuntos
Dispositivos Lab-On-A-Chip , Macrófagos/microbiologia , Interações Microbianas , Óxido Nítrico/metabolismo , Yersinia pseudotuberculosis/fisiologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Comportamento Social
8.
Dev Comp Immunol ; 110: 103720, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32344046

RESUMO

The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.


Assuntos
Bacillus/fisiologia , Bombyx/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Insetos/metabolismo , Intestinos/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Yersinia pseudotuberculosis/fisiologia , Animais , Metabolismo Energético , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA
9.
Methods Mol Biol ; 2010: 41-53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177430

RESUMO

Yersiniosis is common foodborne gastrointestinal disease caused by the enteric pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis. The mouse model of oral infection serves as a useful tool to study enteropathogenic Yersinia infection in mammals. The following protocol describes two distinct oral infection methods: the commonly used oral gavage method in which the bacterial inoculum is instilled directly into the mouse stomach using a feeding needle, and an alternative method in which mice are fed bread soaked with Yersinia culture.


Assuntos
Modelos Animais de Doenças , Doenças Transmitidas por Alimentos/patologia , Yersiniose/patologia , Yersinia enterocolitica/fisiologia , Yersinia pseudotuberculosis/fisiologia , Animais , Imunofluorescência/métodos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Yersiniose/microbiologia
10.
Methods Mol Biol ; 2010: 211-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177441

RESUMO

Many Gram-negative pathogens produce a type III secretion system capable of intoxicating eukaryotic cells with immune-modulating effector proteins. Fundamental to this injection process is the prior secretion of two translocator proteins destined for injectisome translocon pore assembly within the host cell plasma membrane. It is through this pore that effectors are believed to travel to gain access to the host cell interior. Yersinia species especially pathogenic to humans and animals assemble this translocon pore utilizing two hydrophobic translocator proteins-YopB and YopD. Although a full molecular understanding of the biogenesis, function and regulation of this translocon pore and subsequent effector delivery into host cells remains elusive, some of what we know about these processes can be attributed to studies of bacterial infections of erythrocytes. Herein we describe the methodology of erythrocyte infections by Yersinia, and how analysis of the resultant contact-dependent hemolysis can serve as a relative measurement of YopB- and YopD-dependent translocon pore formation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Eritrócitos/microbiologia , Yersiniose/patologia , Yersinia/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/análise , Eritrócitos/patologia , Hemólise , Humanos , Ovinos , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/patologia , Sistemas de Secreção Tipo III/análise , Sistemas de Secreção Tipo III/metabolismo , Yersiniose/metabolismo , Yersiniose/microbiologia , Yersiniose/veterinária , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/patologia , Infecções por Yersinia pseudotuberculosis/veterinária
11.
Sci Signal ; 12(581)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088976

RESUMO

B cell adaptor for phosphoinositide 3-kinase (PI3K) (BCAP) is a signaling adaptor that activates the PI3K pathway downstream of B cell receptor signaling in B cells and Toll-like receptor (TLR) signaling in macrophages. BCAP binds to the regulatory p85 subunit of class I PI3K and is a large, multidomain protein. We used proteomic analysis to identify other BCAP-interacting proteins in macrophages and found that BCAP specifically associated with the caspase-1 pseudosubstrate inhibitor Flightless-1 and its binding partner leucine-rich repeat flightless-interacting protein 2. Because these proteins inhibit the NLRP3 inflammasome, we investigated the role of BCAP in inflammasome function. Independent of its effects on TLR priming, BCAP inhibited NLRP3- and NLRC4-induced caspase-1 activation, cell death, and IL-1ß release from macrophages. Accordingly, caspase-1-dependent clearance of a Yersinia pseudotuberculosis mutant was enhanced in BCAP-deficient mice. Mechanistically, BCAP delayed the recruitment and activation of pro-caspase-1 within the NLRP3/ASC preinflammasome through its association with Flightless-1. Thus, BCAP is a multifunctional signaling adaptor that inhibits key pathogen-sensing pathways in macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caspase 1/genética , Caspase 1/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Ligação Proteica , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/fisiologia
12.
Front Immunol ; 10: 96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915064

RESUMO

Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.


Assuntos
Moléculas de Adesão Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Lectinas Tipo C/imunologia , Lipopolissacarídeos/imunologia , Peste/imunologia , Receptores de Superfície Celular/imunologia , Yersinia pestis/fisiologia , Animais , Células Apresentadoras de Antígenos/imunologia , Moléculas de Adesão Celular/genética , Linhagem Celular , Feminino , Células HeLa , Humanos , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-30109217

RESUMO

The type VI secretion system (T6SS) is a versatile secretion system widely distributed in Gram-negative bacteria that delivers multiple effector proteins into either prokaryotic or eukaryotic cells, or into the extracellular milieu. T6SS participates in various physiological processes including bacterial competition, host infection, and stress response. Three pathogenic Yersinia species, namely Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, possess different copies of T6SSs with distinct biological functions. This review summarizes the pathogenic, antibacterial, and stress-resistant roles of T6SS in Yersinia and the ion-transporting ability in Y. pseudotuberculosis. In addition, the T6SS-related effectors and regulators identified in Yersinia are discussed.


Assuntos
Sistemas de Secreção Tipo VI/metabolismo , Yersinia enterocolitica/fisiologia , Yersinia enterocolitica/patogenicidade , Yersinia pestis/fisiologia , Yersinia pestis/patogenicidade , Yersinia pseudotuberculosis/fisiologia , Yersinia pseudotuberculosis/patogenicidade , Interações Hospedeiro-Patógeno , Estresse Fisiológico , Fatores de Virulência/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-29520342

RESUMO

Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV comprise a inner membrane ABC transporter that transports hemin and hemoproteins from the periplasmic space into the bacterial cytoplasm, where it is degraded by HmuS. Here we show that hmuSTUV but not hmuR are expressed under iron replete conditions, whereas hmuR as well as hmuSTUV are expressed under iron limiting conditions, suggesting complex transcriptional control. Indeed, expression of hmuSTUV in the presence of inorganic iron, but not in the presence of hemin, requires the global regulator IscR acting from a promoter in the intergenic region between hmuR and hmuS. This effect of IscR appears to be direct by binding a site mapped by DNaseI footprinting. In contrast, expression of hmuR under iron limiting conditions requires derepression of the ferric uptake regulator Fur acting from the hmuR promoter, as Fur binding upstream of hmuR was demonstrated biochemically. Differential expression by both Fur and IscR would facilitate maximal hemin uptake and utilization when iron and heme availability is low while maintaining the capacity for periplasmic removal and cytosolic detoxification of heme under a wider variety of conditions. We also demonstrate that a Y. pseudotuberculosis ΔiscR mutant has a survival defect when incubated in whole blood, in which iron is sequestered by heme-containing proteins. Surprisingly, this phenotype was independent of the Hmu system, the type III secretion system, complement, and the ability of Yersinia to replicate intracellularly. These results suggest that IscR regulates multiple virulence factors important for Yersinia survival and growth in mammalian tissues and reveal a surprising complexity of heme uptake expression and function under differing conditions of iron.


Assuntos
Heme/metabolismo , Hemina/genética , Ferro/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica , Infecções por Yersinia pseudotuberculosis/sangue
15.
Microbes Infect ; 20(3): 166-175, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29180033

RESUMO

Yersinia pestis has evolved from Yersinia pseudotuberculosis serotype O:1b. A typical Y. pestis contains three plasmids: pCD1, pMT1 and pPCP1. However, some isolates only harbor pCD1 (pCD1+-mutant). Y. pestis and Y. pseudotuberculosis share a common plasmid (pCD1 or pYV), but little is known about whether Y. pseudotuberculosis exhibited plague-inducing potential before it was evolved into Y. pestis. Here, the luxCDABE::Tn5::kan was integrated into the chromosome of the pCD1+-mutant, Y. pseudotuberculosis or Escherichia coli K12 to construct stable bioluminescent strains for investigation of their dissemination in mice by bioluminescence imaging technology. After subcutaneous infection, the pCD1+-mutant entered the lymph nodes, followed by the liver and spleen, and, subsequently, the lungs, causing pathological changes in these organs. Y. pseudotuberculosis entered the lymph nodes, but not the liver, spleen and lungs. It also resided in the lymph nodes for several days, but did not cause lymphadenitis or pathological lesions. By contrast, E. coli K12-lux was not isolatable from mouse lymph nodes, liver, spleen and lungs. These results indicate that the pCD1+-mutant can cause typical bubonic and pneumonic plague-like diseases, and Y. pestis has inherited lymphoid tissue tropism from its ancestor rather than acquiring these properties independently.


Assuntos
Rastreamento de Células , Medições Luminescentes , Peste/microbiologia , Yersinia pestis/fisiologia , Yersinia pseudotuberculosis/fisiologia , Animais , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Fígado/microbiologia , Fígado/patologia , Pulmão/microbiologia , Pulmão/patologia , Tecido Linfoide/microbiologia , Tecido Linfoide/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peste/patologia , Plasmídeos/genética , Baço/microbiologia , Baço/patologia , Tropismo Viral , Virulência , Yersinia pestis/genética , Yersinia pestis/crescimento & desenvolvimento , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/crescimento & desenvolvimento
16.
EMBO Rep ; 19(1): 29-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141986

RESUMO

The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Alvéolos Pulmonares/metabolismo , Células A549 , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Humanos , Mycobacterium tuberculosis/fisiologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Polimerização , Alvéolos Pulmonares/microbiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Shigella flexneri/fisiologia , Transdução de Sinais , Especificidade da Espécie , Yersinia pseudotuberculosis/fisiologia
17.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29263104

RESUMO

Murine Ly6Chi inflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response to Yersinia pseudotuberculosis infection. We are investigating how IMs, which can differentiate into CD11c+ dendritic cells (DCs), contribute to innate and adaptive immunity to Y. pseudotuberculosis Previously, we obtained evidence that IMs are important for a dominant CD8+ T cell response to the epitope YopE69-77 and host survival using intravenous infections with attenuated Y. pseudotuberculosis Here we challenged CCR2+/+ or CCR2-/- mice orally with wild-type Y. pseudotuberculosis to investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2-/- mice did not have reduced survival but retained body weight better and their MLNs cleared Y. pseudotuberculosis faster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2-/- mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers. In situ imaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-rich Yersinia-containing pyogranulomas. GFP+ IMs colocalized with CD11c+ cells and YopE69-77-specific CD8+ T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses in Yersinia pyogranulomas. Consistently, CCR2-/- mice had reduced numbers of splenic DCs, YopE69-77-specific CD8+ T cells, CD4+ T cells, and B cells in organs and lower levels of serum antibodies to Y. pseudotuberculosis antigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oral Y. pseudotuberculosis infection.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Monócitos/imunologia , Boca/microbiologia , Receptores CCR2/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia
18.
J Exp Med ; 214(11): 3171-3182, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28855241

RESUMO

Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed "effector-triggered immunity." The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase-induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.


Assuntos
Apoptose/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Apoptose/genética , Citocinas/imunologia , Citocinas/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Sobrevida , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia
19.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28784930

RESUMO

Gram-negative bacterial pathogens utilize virulence-associated secretion systems to inject, or translocate, effector proteins into host cells to manipulate cellular processes and promote bacterial replication. However, translocated bacterial products are sensed by nucleotide binding domain and leucine-rich repeat-containing proteins (NLRs), which trigger the formation of a multiprotein complex called the inflammasome, leading to secretion of interleukin-1 (IL-1) family cytokines, pyroptosis, and control of pathogen replication. Pathogenic Yersinia bacteria inject effector proteins termed Yops, as well as pore-forming proteins that comprise the translocon itself, into target cells. The Yersinia translocation regulatory protein YopK promotes bacterial virulence by limiting hyperinjection of the translocon proteins YopD and YopB into cells, thereby limiting cellular detection of Yersinia virulence activity. How hyperinjection of translocon proteins leads to inflammasome activation is currently unknown. We found that translocated YopB and YopD colocalized with the late endosomal/lysosomal protein LAMP1 and that the frequency of YopD and LAMP1 association correlated with the level of caspase-1 activation in individual cells. We also observed colocalization between YopD and Galectin-3, an indicator of endosomal membrane damage. Intriguingly, YopK limited the colocalization of Galectin-3 with YopD, suggesting that YopK limits the induction or sensing of endosomal membrane damage by components of the type III secretion system (T3SS) translocon. Furthermore, guanylate binding proteins (GBPs) encoded on chromosome 3 (GbpChr3 ), which respond to pathogen-induced damage or alteration of host membranes, were necessary for inflammasome activation in response to hyperinjected YopB/-D. Our findings indicate that lysosomal damage by Yersinia translocon proteins promotes inflammasome activation and implicate GBPs as key regulators of this process.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação ao GTP/genética , Inflamassomos/imunologia , Sistemas de Secreção Tipo III/metabolismo , Yersinia pseudotuberculosis/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Caspase 1/metabolismo , Linhagem Celular , Citocinas/biossíntese , Citocinas/imunologia , Proteínas de Ligação ao GTP/metabolismo , Galectina 3/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Transporte Proteico , Virulência , Yersinia pseudotuberculosis/fisiologia
20.
Sci Rep ; 7(1): 639, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377623

RESUMO

The transition between the planktonic state and the biofilm-associated state is a key developmental decision for pathogenic bacteria. Biofilm formation by Yersinia pestis is regulated by hmsHFRS genes (ß-1, 6-N-acetyl-D-glucosamine synthesis operon) in its flea vector and in vitro. However, the mechanism of biofilm formation in Yersinia pseudotuberculosis remains elusive. In this study, we demonstrate that the LysR-type regulator RovM inversely regulates biofilm formation and motility in Y. pseudotuberculosis by acting as a transcriptional regulator of these two functions. RovM is strongly induced during growth in minimal media but strongly repressed in complex media. On one hand, RovM enhances bacterial motility by activating the expression of FlhDC, the master regulator of flagellar genes, via the recognition of an operator upstream of the flhDC promoter. On the other hand, RovM represses ß-GlcNAc production under nutrition-limited conditions, negatively regulating hmsHFRS expression by directly binding to the -35 element of its promoter. Compared to wild-type bacteria, the rovM mutant established denser biofilms and caused more extensive mortality in mice and silkworm larvae. These results indicate that RovM acts as a molecular switch to coordinate the expression of genes involved in biofilm formation and motility in response to the availability of nutrients.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Plâncton/crescimento & desenvolvimento , Yersinia pseudotuberculosis/fisiologia , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Virulência , Yersinia pseudotuberculosis/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...